PART A - GRAPH THEORY - 20 MARKS

1. Equivalent Graphs (4 marks)

2. <u>Graph Degrees (6 marks)</u>

3. <u>Problem Solving with Graphs (10 marks)</u>

PART B - SEQUENCES, RECURRENCE RELATIONS - 10 MARKS

1. <u>Terms of a Sequence (6 marks)</u>

$$a_{2} = a_{1} + \frac{1}{2(3)} = \frac{1}{2} + \frac{1}{2(3)} = \frac{1}{2} \times (1 + \frac{1}{3}) = \frac{1}{2} \times \frac{4}{3} = \frac{2}{3}$$

$$a_{3} = a_{2} + \frac{1}{3(4)} = \frac{2}{3} + \frac{1}{3(4)} = \frac{1}{3} \times (2 + \frac{1}{4}) = \frac{1}{3} \times \frac{9}{4} = \frac{3}{4}$$

$$a_{4} = a_{3} + \frac{1}{4(5)} = \frac{3}{4} + \frac{1}{4(5)} = \frac{1}{4} \times (3 + \frac{1}{5}) = \frac{1}{4} \times \frac{16}{5} = \frac{4}{5}$$

2. <u>Iteration (4 marks)</u>

 $a_n = n / (n+1)$

PART C – INDUCTION – 20 MARKS

1. <u>Mathematical (weak) Induction (10 marks)</u>

Prove by induction that for all positive integers n, $\sum_{i=2}^{n} i(i-1) = \frac{n(n-1)(n+1)}{3}$ Let P(n) be the property: $\sum_{i=2}^{n} i(i-1) = \frac{n(n-1)(n+1)}{3}$ We must prove $\forall n \in \mathbb{N}^+ P(n)$ **Proof by induction** Base case: Let n=1, then $\sum_{i=2}^{n} i(i-1) = \sum_{i=2}^{0} i(i-1) = 0$ Also $\frac{n(n-1)(n+1)}{3} = \frac{1(0)(2)}{3} = 0$ So P(0) is true Inductive step: Assume that P(k) is true for some $k \ge 1$ i.e. $\sum_{i=2}^{k} i(i-1) = \frac{k(k-1)(k+1)}{3}$ (Inductive Hypothesis) We will show that P(k+1) is also true i.e. we will show that $\sum_{i=2}^{k+1} i(i-1) = \frac{(k+1)k(k+2)}{3}$ $\sum_{i=2}^{k+1} i(i-1) = (k+1)(k) + \sum_{i=2}^{k} i(i-1)$ Definition of sum = k(k+1) + $\frac{k(k-1)(k+1)}{3}$ by Inductive H = 1/3 [3k(k+1) + k(k-1)(k+1)] algebra by Inductive Hypothesis = k(k+1)/3 [3+(k-1)]algebra = k(k+1)(k+2)/3algebra

QED

2. <u>Types of induction (10 marks)</u>

Proof description	Needs	Explanation of your answer
_	strong	
	induction?	
	(Y/N)	
Proof of the correctness of the solution for the sequence a_n recursively defined as: $a_1=2, a_2=3, a_n=a_{n-2}+2$ for $n>2$	Y	The recurrence relation defines a_n in terms of a_{n-2} , Therefore in order to prove that the solution is correct for a_n , one must assume that the solution is correct for a_{n-2} . Therefore the inductive hypothesis cannot be simply that the solution is correct for a_{n-1} .
Proof of the correctness of the solution for the sequence b_n recursively defined as: $b_1=2, b_2=5, b_n=b_{n-1}+3$ for n>2	N	Even though this sequence has a recurrence relation that starts at n=3, the recurrence relation is also true for n=2. Therefore this sequence is a simple arithmetic sequence starting at n=1 with a recurrence relation where each term is defined as a function of the previous term. The correctness of the solution $a_n=2+3(n-1)$ can be proved using mathematical induction.
Proof that every positive integer has a unique binary representation starting with a leading 1.	Y	The proof of the existence part of this theorem is a proof by induction which proves the property for an integer n by assuming that it is true for $\lfloor n/2 \rfloor$. Therefore the inductive hypothesis must be that the property is true for all number less than n.