PART A - GRAPH THEORY - 20 MARKS

1. Equivalent Graphs (4 marks)

2. Graph Degrees (6 marks)
a) A graph with 5 vertices of degrees 5, 5, 4, 4, 3

This is not possible because the total degree of this graph would be 21 which is odd. By the Handshake theorem graphs must have even degrees,
b) A graph with 5 vertices of degrees 5, 5, 4, 4, 4

There are many possible answers. For
example

3. Problem Solving with Graphs (10 marks)

PART B - SEQUENCES, RECURRENCE RELATIONS - 10 MARKS

1. Terms of a Sequence (6 marks)
$a_{2}=a_{1}+\frac{1}{2(3)}=1 / 2+1 /(2 \times 3)=1 / 2 \times(1+1 / 3)=1 / 2 \times 4 / 3=2 / 3$
$a_{3}=a_{2}+\frac{1}{3(4)}=2 / 3+1 /(3 \times 4)=1 / 3 \times(2+1 / 4)=1 / 3 \times 9 / 4=3 / 4$
$a_{4}=a_{3}+\frac{1}{4(5)}=3 / 4+1 /(4 \times 5)=1 / 4 \times(3+1 / 5)=1 / 4 \times 16 / 5=4 / 5$
2. Iteration (4 marks)
$\mathrm{a}_{\mathrm{n}}=\mathrm{n} /(\mathrm{n}+1)$

PART C - INDUCTION - 20 MARKS

1. Mathematical (weak) Induction (10 marks)

Prove by induction that for all positive integers $\mathrm{n}, \sum_{i=2}^{n} i(i-1)=\frac{n(n-1)(n+1)}{3}$
Let $\mathrm{P}(\mathrm{n})$ be the property: $\sum_{i=2}^{n} i(i-1)=\frac{n(n-1)(n+1)}{3}$
We must prove $\forall \mathrm{n} \in \mathbb{N}^{+} \mathrm{P}$ (n)

Proof by induction

Base case:
Let $\mathrm{n}=1$, then $\sum_{i=2}^{n} i(i-1)=\sum_{i=2}^{0} i(i-1)=0$
Also $\frac{n(n-1)(n+1)}{3}=\frac{1(0)(2)}{3}=0$
So $\mathrm{P}(0)$ is true
Inductive step:
Assume that $\mathrm{P}(\mathrm{k})$ is true for some $\mathrm{k} \geq 1$
i.e. $\sum_{i=2}^{k} i(i-1)=\frac{k(k-1)(k+1)}{3}$ (Inductive Hypothesis)

We will show that $\mathrm{P}(\mathrm{k}+1)$ is also true
i.e. we will show that $\sum_{i=2}^{k+1} i(i-1)=\frac{(k+1) k(k+2)}{3}$
$\sum_{i=2}^{k+1} i(i-1)=(k+1)(k)+\sum_{i=2}^{k} i(i-1) \quad$ Definition of sum

$=\mathrm{k}(\mathrm{k}+1)+\frac{k(k-1)(k+1)}{3}$		\quad by Inductive Hypothesis	
$=1 / 3[3 \mathrm{k}(\mathrm{k}+1)+\mathrm{k}(\mathrm{k}-1)(\mathrm{k}+1)]$		algebra	
$=\mathrm{k}(\mathrm{k}+1) / 3[3+(\mathrm{k}-1)]$		algebra	
	$=\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2) / 3$		algebra

QED

2. Types of induction (10 marks)

Proof description	Needs strong induction? (Y / N)	Explanation of your answer
Proof of the correctness of the solution for the sequence a_{n} recursively defined as: $a_{1}=2, a_{2}=3, a_{n}=a_{n-2}+2$ for $n>2$	Y	The recurrence relation defines a_{n} in terms of a_{n-2}, Therefore in order to prove that the solution is correct for a_{n}, one must assume that the solution is correct for $\mathrm{a}_{\mathrm{n}-2}$. Therefore the inductive hypothesis cannot be simply that the solution is correct for $\mathrm{a}_{\mathrm{n}-1}$.
Proof of the correctness of the solution for the sequence b_{n} recursively defined as: $b_{1}=2, b_{2}=5, b_{n}=b_{n-1}+3$ for $n>2$	N	Even though this sequence has a recurrence relation that starts at $\mathrm{n}=3$, the recurrence relation is also true for $\mathrm{n}=2$, Therefore this sequence is a simple arithmetic sequence starting at $\mathrm{n}=1$ with a recurrence relation where each term is defined as a function of the previous term. The correctness of the solution $a_{n}=2+3(n-1)$ can be proved using mathematical induction.
Proof that every positive integer has a unique binary representation starting with a leading 1.	Y	The proof of the existence part of this theorem is a proof by induction which proves the property for an integer n by assuming that it is true for $\lfloor\mathrm{n} / 2\rfloor$. Therefore the inductive hypothesis must be that the property is true for all number less than n.

